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Abstract

A complete set of series form solutions of stress and displacement functions, including all higher order terms, around
the crack tip for anisotropic crack problems have been newly derived by eigenfunction expansion approach. The an-
alytical solutions of displacement functions were classified into four cases with respect to different types of complex
parameters and different corresponding physical meanings. By employing these displacement functions as global in-
terpolation functions, fractal two-level finite element method (F2LFEM) was applied to evaluate the stress intensity
factors (SIFs) for various kinds of anisotropic crack problems. In the method of F2LFEM, the infinite number of nodal
displacements was transformed to a small set of generalized coordinates by fractal transformation technique. New
element matrices need not be generated and the singular numerical integration was avoided completely. Numerical
examples of the four cases were studied and high accurate results of SIFs were obtained.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The usefulness of the stress intensity factors (SIFs) in the analysis of the problems of residual strength,
fatigue crack growth rate and stress corrosion has resulted in effort being expanded on the determination of
SIFs. The use of the SIF in examining crack stability requires an accurate prediction or estimation of the
stress field in the vicinity of the crack tip for the given structural geometry, loading and boundary con-
ditions. However, analytical solutions only exist for certain relatively simple cases due to the complicated
boundary conditions associated with the governing equations. Over the last decade or so, finite element
method (FEM) has been firmly established as a standard procedure for the solution of practical fracture
problems. A number of techniques have been suggested for the evaluation of SIF from the finite element
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results but adequate representation of the crack tip singularity remains a common problem to most of these
methods.

Fractal finite elements is originated with Panagiotopoulos (1992, 1993). He adopted the iterated function
system to model fractal boundaries and fractal bodies, obtaining asymptotic results for stresses and strains
in elastic bodies by classical finite element method. The normal and tangent loads acting on the fractal
boundaries were thoroughly investigated and defined using the method of fractal interpolation function.
Recently Carpinteri et al. (2001) introduced a new mathematical formulation to handle the mechanical
quantities of displacements and total energy of fractal bodies based on fractional calculus. The principle of
virtual work for fractal media was rigorously demonstrated and the fractal FEM was introduced by the use
of devil’s staircase spline functions.

The use of fractal geometry to generate infinite number of finite elements around the crack tips has been
adopted by Hu et al. (1998), Song and Wolf (2002) and Leung and Su (1994, 1995b, 1998c). The method
proposed by Leung and Su was entitled fractal two-level finite element method (F2LFEM). The advantage
of this method is that instead of solving large number of unknowns for conventional finite element meshes,
after fractal transformation by the global interpolation functions, only a small set of generalized coordi-
nates remains to be determined. The singularity of the crack tip is modeled by the fractal geometry concepts
such that infinitesimal mesh refinement around the crack tip can be achieved. The SIF can be obtained
directly from the generalized coordinates without any post-processing technique.

The method of F2LFEM has been successfully applied to solve many kinds of crack problems such as
mode I, II, III and mixed-mode 2D cracks (Leung and Su, 1994,1995a,b,1996a,c), cracked classical and
Reissner’s Plates (Leung and Su, 1996b,d; Su et al., 1998; Su and Leung, 2001a; Su and Sun, 2002), axi-
symmetric cracks (Leung and Su, 1998c¢), penny-shaped and circumferential cracks (Leung and Su, 1998b),
vibration of cracked beams (Leung and Su, 1998a), together with three-dimensional (3D) cracks (Leung
and Su, 1995¢c; Su and Leung, 2001b). Recently, this method has been found to be able to evaluate the
coefficients of the higher order terms of the crack tip asymptotic field (Su et al., 2003). Upon the above
review, this method has been proved to be efficient and accurate to evaluate the SIFs for cracks in elastic
and isotropic materials. Now this method is extended to tackle elastic anisotropic crack problems, using the
newly derived displacement functions around the crack tip (Sun, 2003) as the global interpolation func-
tions.

2. Fractal two-level finite element method
2.1. Introductory formulation of anisotropic elasticity

For a through cracked composite lamina in a state of plane stress, the equations of equilibrium in the
absence of body forces are

0o, 0ty 01y, Oo,
= 0. 1
ox Oy Tox Oy (1)

The strain—stress relation for a homogeneous anisotropic material is

Ex ay  app ae Oy
&y = |an axn ax Oy ¢. (2)
ny aig Ay oo Ty

Due to the symmetry of compliance matrix, there are altogether six independent constants. Substituting the
stress—strain relation (2) into the following compatibility equation
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Fe, ey Oy

2 ox2  oxdy (3)
results in

o? o? o?

67)’2 (a110+ + a126, + a16Tyy) + ] (@120, + ana, + axTy,) — m (@160, + ax0y + ageTyy) = 0. (4)
A stress function, F, is defined as follows such that the equilibrium equations can be satisfied

O’F O*F O’F

ax:a—yz, o =37 Txyz—m. (5)
Substituting the above stress functions into Eq. (4), the governing equation is obtained

azzg‘TIj— a%%"‘(2a12+a66)%_2a16%+a11§7§: 0. (6)
This equation can also be written in terms of differential operators as

D\D>D;Dy = 0, (7)

where

0 0 .
Di—<a_ﬂia)a l_1a2a3a4

and g, are the characteristic roots of the characteristic equation
an it = 2ai6’ + (2a12 + age) )’ — 2axp + an = 0. (8)

It has been proved by Lekhnitskii (1963) that the characteristic Eq. (8) could have either complex, or purely
imaginary roots but could not have real roots in the case of any ideal elastic body with real constants
ayy, 2ay; + aeg, axp not equal to zero. The general form of the characteristic roots can be denoted as,

M1:u+iﬂ7 #2:7)—1—15)
W =H =a—Iif, =M =7—10.

©)

The quantities of u, and u, are called the complex parameters which characterize the degree of anisotropy
in the case of plane problems. According to their values it can be judged how much a given body differs
from that of the isotropic, for which u; = p, always equal to i.

The complex parameters got from characteristic Eq. (8) can be grouped into four cases (Sun, 2003). As
shown in Fig. 1, Cases I-1II correspond to orthotropic cases with the elasticity axes parallel to the coor-
dinate axes, and Case IV corresponds to a general orientation of elasticity axes. For Cases I-III when the
terms a4 = ays = 0 in the compliance matrix, the characteristic Eq. (8) will be the form

E E
2

Introducing the notations of 4 = (E,/2Gy,) — vy, and B = E, /E,, different type of roots u, and p, can be
got based on different relations between 4 and B as shown in Table 1. These different roots (complex
parameters) will lead to different final analytical solutions shown in next section. This is also the main
reason why Cases I-11I are separated although they have the same physical meanings.

For Case IV when coordinate system and the elasticity axes do not coincide with each other, the
characteristic Eq. (8) will be a fourth order equation. To avoid dealing with this complicated equation, it
has been shown by Lekhnitskii et al. (1968) that a simple transformation formula shown below can be
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(8 Cases|, Il and 11 (b) Case IV

Fig. 1. Classification of anisotropic crack problems concerned.

Table 1
Classification of anisotropic crack problems based on the complex parameters p
Case Orientation of elasticity axes Coefficients of the compli- The complex parameters
ance matrix
1 Orth(;).tropy ar.ld coinlc::i.dellt(\&)/ith the a1, axn, a“,Oalz #0, =i /A+ A —B = ig,
coordinate axis, see Fig. 1(a). ale = ax =
W, =1VA —VA* — B =10.
I w=iVVB =i, 1, = .
111 W =V-A+ivB—A2=o+if, p, = —a+1ip.
- . ., cosl —sinf .
v Orthotropy but not coincident with a1, a2, aes, a12, ais, axs #0 W) = cosO+ . snd «+1ip,
the coordinate axis, see Fig. 1(b). ) Zcz)scos—zlﬁ :E 0 ‘
Wy = ———— =7y +10.

~ cos O+ p, sin 0

Note: A =E,/2Gy, — v, and B = E| /E>.

followed to get the complex parameters in coordinate system x'0)’ from those in xoy (see Fig. 2), and the
complex parameters y; and y, in xoy can be obtained from Eq. (9).
u, cos 0 —sin 0 _ Hpcos0—sin0

/:—. /_—.~ 11
= cos0+ ysin0” 127 cosO+ iysin0 (11)

LY €,

L,

(0]

Fig. 2. The complex parameters in two coordinates.
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2.2. Global interpolation function

By adopting appropriate form of stress function F (Eq. (5)), adding up the boundary conditions, the
analytical solutions of stress and displacement near the crack tip were derived by Sun (2003) using
eigenfunction expansion technique. Those series form of displacement functions shown below can serve as
global interpolation function in F2LFEM:

(1) Case I
= b
u=2 Y c{blj( - Er*fml cos 0, + rym, cos woz) + by (rV'my sin 0, — rYm; sin lpoz)}
Jj=1(odd)
00 5. .
+2 > C{bu( — r¥my cos 0, + r¥my cos y0,) + by (#{/ gmisin Y0, — rimy sin ¢02> }
j=2(even)

v=2 Y ¢ blj( - grll//nl sin 0, + ¥ n, sin lpez) — by;(F/'ny cos Y0, — i, cos wez)}

> . . 0
+ Z Zj{bu( — ¥y sin0) + riny sin0y) — by, (r'{’Bnl cos Y0, — r¥n,cos ¢02> },

(12)

where f and ¢ are the imaginary parts of the complex parameters (see Case I in Table 1), 1; = j/2
(eigenvalue), { =4, + 1,y =4, (j =1, 2, 3, 4, etc.).

a a
my = —ayp’ +an, m=—and +apn, n=-—app +%7 ny = —apo +§7
. sin ¢
= ry/cos? % sin’ 0, = arctan b
7 I"\/ ¢ + ﬁ 1 d)7 1 cOS ¢ ;
. dsin ¢
= ry/cos? *sin’ ¢, 6, = arctan
2 V\/ ¢+ ¢ b 0
and r and ¢ are the polar coordinates shown in Fig. 1(a).
(2) Case II:

) 2 [(_me Y Jo _J 1_2
u mljzzoi"l {blj[( m1+2+< ) 005291 2’COS 5 01
(=™ 1y Y sindo, —Lsin (L -
sz[( m1+2 ( 1))sm201 2sm<2 2)91}},
(™2 1y sino, 4L sin (£ -
(nl 5 ( 1))s1n291+2sm<2 2)91}

(34 v)ento (42l

where f§ is the imaginary part of the complex parameter (see Case II in Table 1),

(13)

2 2 an 3ay
my = —anp +apn, my=3ayp +an, n=-apft+—, m=apf+—r7,

B B
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_ 5 2 2 0, — arct Bsin ¢
r r\/cos ¢+ p°sin” ¢, 0, = arctan oy

and r and ¢ are the polar coordinates shown in Fig. 1(a).
(3) Cases III and 1V:

u="2 zoo: alj{r’{’ Kﬁl +ﬁ2§> cosyl, + <ﬁ1§—ﬁ2> sinn,bﬁl}

Jj=1(odd)

L

_ _0 _ .0\ . = . .
g o o]} 2 5 o)
n)

Jj=2(eve

. uf .0 .0 .
_ r‘zﬁ [ngcos Vo, —&—ﬁlgsm 1//92} } +b1]£{r1/’ (pz; cosy0, + p, 2 sin ¢91>

. - . . .0 L0 .
_ (ﬁ] +p}§) sin wﬂl} — rf [pl é cosy0, —ng sin wﬁz} } + Cbgj{r‘f [pl ; cosy0, —ng sin w(?l]

_ 0 . _ 0\ .
_r2¢[<P12+P2) cosy0, + (Pl _P22> ssz”- (14)
The v component of the displacement can be obtained by replacing p, by g, and p, by g, (k = 1, 2) in the
above Eq. (14).Where o, f5, y and 6 can be found in Table 1 (Cases III and 1V),

j']:]/27 C:/l/—"_la lp:ija w:j'j_la X:fx_V (j:17273747etc')7
ﬁl :a“(:xz—ﬁz)—i—alz—aléo(, ﬁzzZallaﬁ_amﬁv

p = 011(“/2 - 52) +an —ag), P, =2a1y0 — aie,

A~ o q
—apo+an———a , =a —ayp————>,
q, 12 22062+ﬁ2 2%, D2 2h 220(2_'_132
N v G 0
q :a12V+azzm—a26; q2:a125—422m7
. 2 2 Lia2 ﬁSin¢
_ i 0, = arctan ———————,
" r\/(cosqﬁ—i-ocsmqb) +p7sin" ¢, 0, ¢ ncos¢+asm¢
- : 0 sin
ry = r\/(Cos ¢ +ysing)’ + 8 sin’ g, 0, = arctanm

and r and ¢ are the polar coordinates shown in Fig. 1(b).

In the above Egs. (12)—(14), the coefficients of a,;, ay;, b1; and b,; are generalized coordinates which are to
be determined after loading and boundary conditions are imposed. The relationship between the SIFs and
the coefficients can be got by the following definitions:

K = lin(} V2nray|,_y, Kn= lirrol V21t | 4o (15)
substituting the corresponding stress components into the above equations, the higher order terms vanish

when r — 0 and only the singular term of 1/,/r remains. Therefore the SIFs are related to the first term of
the generalized coordinates (b;; and b,; or a;; and by;) as follows (Sun, 2003),
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(1) Case I:
3 0 3

m:ﬁ%mgj+1,meﬁ%waa (16)
(2) Case II:

KI - 2\/2_7'Cb117 KII = —Zﬁ\/z_nb21. (17)
(3) Cases III and 1V:

3 P\ 3 o—&°
Ky = \/2_n(a11 +§b11>7 Ky = —\/2_7T[011 (OH' ﬁa _l; ) +§b11 <V +ﬁa = )] (18)

2.3. Formulation of F2LFEM

In the formulation of F2LFEM, the cracked elastic body is divided into the singular region ¥ and the
regular regions 2 by the boundary I'; as shown in Fig. 3. In the regular region, the conventional finite
elements are adopted and the nodal displacements serve as unknowns. Conventional FEMs suggest the
following local (first level) interpolation for the element displacements u(x),

u = Nd, (19)

where N = N(¢&, i) is the shape function matrix in terms of the natural coordinates (&, %), and d is the nodal
displacement vector.

Within the singular region, an infinite set {I'|,I'»,I’s,...} of curves similar to the shape of I'j with
proportionality constants &', &, &, ... (0 < € < 1) are generated. Let the displacements of the master nodes
on the boundary I'y be d,, and those of the slave nodes within the boundary I'y be d;. The grading of mesh
inside the singular region can be controlled by the proportionality constant ¢ < 1. Higher values of & will
produce finer grade of mesh and vice versa.

It has been shown (Sun, 2003) that displacements near the crack tip do not vary arbitrarily but follow
certain displacement patterns which automatically satisfy the boundary conditions at the crack surface.
These displacement patterns serve as good global (second level) interpolation functions for F2LFEM to
interpolate the nodal displacements near the crack tip, as follows,

dy(r,0) =T(r,0)a (20)

Crack

Singular region ¥ with
infinite similar layers

Fig. 3. Regular and singular regions and construction of fractal mesh.
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in which T = T(r, 6) is a transformation matrix and a is the unknown generalized coordinate vector which
is independent of the polar coordinates.

According to the conservation of strain energy, after transformation, the global finite element stiffness
equation (Leung and Su, 1994) can be written as

K.d, = Qm (21)

K., = Q,, (22)
where

w I(mm KmsT o _ Qm 3 dm

KS - |:TTKsm TTKSST:| 9 Qs - { TTQS } and dS - { a } (23)

2.4. Fractal transformation

To carry out the transformation, the first layer stiffness matrix K for the first layer of mesh (Fig. 3) is
first partitioned with respect to s and m:

K= K d,
Ka= e o [ ) &0

The displacements at the slaves can be replaced by the global (second level) interpolation function as
follows,

{:;} - H}i (I)Hd?n}’ (25)

where the transformation matrix T£ can be evaluated by using Eqs. (12)—(14) and a is the generalized
coordinate vector. After transformation, one has,

—f a TfTKf Tf TfTKf a
Ks{dm} = [ KT k. d, [ (26)

ms s

Furthermore, considering the matrix transformation of the kth inner layer of the element stiffness matrix
and the assembly of inner layer of meshes from the second layer to infinite layer, the generalized stiffness
matrix K' is written as

f: T+ KT
k=2

where K* is the stiffness of the kth layer which had been proved to be equal to the stiffness matrix of the first
layer (Leung and Su, 1994) and T* is the transformation matrix of the kth layer of mesh. Since T is a power
series of r, it can be related to the transformation matrix of the first layer T' by

T = T'Diag[o)], (28)

Ka= a, (27)

where o; = a;(&, k) is a scaling function for the transformation matrices. By comparing the transformation
matrices T¥ and T', it had been shown that «;(1/2,k) = 1/2/*~1) when & = 1/2. Putting Eq. (28) into
Eq. (27), one has,

Ka= | Diagls) T" K'T'Diag[s,] |a. (29)

k=2
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Eq. (29) is a geometrical series, it can be further simplified as

— —

Ka= e auk,f, - | a, (30)
where

_ - 1

Oﬁij:kz_;diaj:m, (31)

where l_cl.fj is the ijth entry in matrix TfTKfo, and @; = &,:,-(E) is a scaling function for the entry. Eq. (30)
implies that the transformation and assembly of all the inner layer elements can be accomplished effectively
by modifying the generalized stiffness matrix of the first layer using the scaling function ;. The complete
generalized stiffness matrix for the singular region can be calculated by adding up Egs. (26) and (30) of the
first layer and the inner layers of stiffness matrices, respectively.

3. Numerical examples for Case I crack problems
3.1. Rectangular plates with a central crack under tension

The problems considered are shown in Fig. 4. A rectangular sheet with a central crack of 2a is under
tensile stress of o. Bowie and Freese (1972) have successfully presented extensive data on this kind of
problems for several different geometries and materials. The SIFs presented by Bowie and Freese have not
related to practical material properties, only the value of complex parameters u, and u, rather than the
explicit material constants were given. It is therefore considered sufficient to fix f§ as unity and vary the
parameter of J to find how much the degree of anisotropy can affect the SIFs. According to the relations of
two complex parameters (Case I in Table 1), one has

[Tl T T

E,

=

F—a—

2w

NEREEEN

Fig. 4. Single central crack subjected to tension (Hatched area represents the singular region).
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po=VE/E, B+06=V2UV(E/E)+Ei/26n — v} (32)
Putting f = 1 into the above equations, one has
52:E1/E2, 1 +5: \/E{\/ (El/E2)+E1/2G127V12}1/2. (33)

In the present study, Young’s modulus £, is fixed as 30 units and vy, as 0.3, £, and Gy, are varied to attain
the variation of 6° as shown in Table 2.

The mesh for F2LFEM analysis is shown in Fig. 4. Due to symmetry of this problem, only one-quarter
of the plate needs to be modeled. Three types of height to width ratio (#/w = 1.0, 1.5, 2.0) are investigated
and each type contains different values of 6* and different crack length to specimen width ratio a/w. The
dimensionless SIFs got from F2LFEM are tabulated in Tables 3-5 for #2/w = 1.0, 1.5 and 2.0 respectively.
The results are compared with those from Bowie and Freese (1972) in Figs. 5-7. The errors are found to be
less than 3.0%.

3.2. Infinite strip with internal crack under tension, pure bending

Infinite orthotropic strip with internal crack subjected to uniform tension and pure bending as shown in
Fig. 8 are studied by F2LFEM. The crack varies its position and length by different value of ratios a /A and
b/h. For pure bending load case (Fig. 8(b)), the normalizing maximum stress at the edges of the strip is
o = 6M /h*. The material properties under consideration are:

Table 2
Material constants and complex parameters for cracked rectangular plate (Case I)
& E, (Psi x 10%) E, (Psi x 10%) Via Gy (Psi x 10%)
p=1 0.1 30.0 300.0 0.3 17.647
0.3 30.0 100.0 0.3 15.789
0.5 30.0 60.0 0.3 14.286
0.7 30.0 42.857 0.3 13.043
0.9 30.0 33.333 0.3 12.000
1.0 30.0 30.0 0.3 11.538
1.1 30.0 27.273 0.3 11.111
1.5 30.0 20.0 0.3 9.677
2.5 30.0 12.0 0.3 7.317
35 30.0 8.571 0.3 5.882
4.5 30.0 6.667 0.3 4918
Table 3
SIFs for central crack tension from F2LFEM, #/w = 1.0
5 alw
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1 1.035 1.148 1.320 1.540 1.816 2.169 2.606 3.112
0.3 1.027 1.096 1.212 1.369 1.566 1.800 2.076 2.417
0.5 1.020 1.076 1.169 1.297 1.454 1.642 1.874 2.196
0.7 1.016 1.065 1.145 1.254 1.390 1.555 1.769 2.088
0.9 1.014 1.057 1.128 1.226 1.348 1.500 1.704 2.023
1.0 1.013 1.054 1.122 1.215 1.333 1.480 1.681 1.999
1.1 1.012 1.052 1.117 1.206 1.319 1.462 1.661 1.980
1.5 1.009 1.044 1.101 1.179 1.281 1.414 1.606 1.925
2.5 1.006 1.035 1.081 1.146 1.235 1.357 1.543 1.862
3.5 1.004 1.030 1.072 1.131 1.214 1.332 1.514 1.833

4.5 1.003 1.028 1.066 1.123 1.203 1.318 1.498 1.815
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Table 4
SIFs for central crack tension from F2LFEM, &/w = 1.5
5 ajw
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1 1.031 1.070 1.165 1.291 1.442 1.618 1.820 2.123
0.2 1.022 1.056 1.126 1.219 1.335 1.478 1.670 1.983
0.3 1.015 1.046 1.103 1.181 1.282 1.413 1.604 1.924
0.5 1.009 1.036 1.081 1.147 1.235 1.358 1.548 1.875
0.7 1.006 1.031 1.072 1.132 1.215 1.336 1.525 1.854
0.9 1.004 1.028 1.067 1.124 1.205 1.324 1.513 1.843
1.0 1.003 1.028 1.065 1.121 1.202 1.320 1.509 1.839
1.1 1.003 1.027 1.064 1.119 1.199 1.317 1.505 1.835
Table 5
SIFs for central crack tension from F2LFEM, &/w = 2.0
& ajw
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1 1.022 1.036 1.093 1.171 1.268 1.391 1.558 1.864
0.2 1.016 1.033 1.076 1.137 1.221 1.338 1.519 1.843
0.3 1.010 1.029 1.066 1.122 1.202 1.318 1.505 1.834
0.4 1.008 1.026 1.062 1.116 1.195 1.311 1.499 1.831
0.5 1.006 1.025 1.060 1.113 1.191 1.308 1.497 1.829
K, Joma
3.2
3.
0 —F2LFEM
2.8
x Bowie & Freese (1972)
2.6}

.

Bowie & Freese (1972)

Fig. 5. Comparison of SIFs for cracked rectangular plate, #/w = 1.0.
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K, /c\/ﬁ
22

x  Bowie & Freese (1972)
« Bowie& Freese (1972)
— F2LFEM

a/w=038
18

16

14

12 -

1.0
12

Fig. 6. Comparison of SIFs for cracked rectangular plate, 2/w = 1.5.

K,/o+ra
20 [0
a/w=0.8
18 . . .
— F2LFEM
x Bowie & Freese (1972)
1.6 * Bowie& Freese (1972)
T a/w=0.7
X B3
1.4
\-\ a/w=0.6
Ll T aw=05
T . alw=0.4
I
1.0 x :
0.1 0.2 0.3 0.4 05
2
o

Fig. 7. Comparison of SIFs for cracked rectangular plate, 2/w = 2.0.

E1 = 170.65 GPa, E2 = 55.16 GPa, Vip = 01114, Uy = 0.036.

The dimensionless SIFs got from F2LFEM solutions are compared with those from Kaya and Erdogan
(1980) for each type of load case and for different kinds of crack geometries. For convenience, the result
comparison for a/h = 0.1 and 0.2 is tabulated together in Table 6, and the comparison for «/h = 0.3 and
0.4 is shown in Table 7. From these two tables, the errors are found to be less than 1.0% generally. It should
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ERRER
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, 3,
a

f
@ f (b)

PR
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Fig. 8. Infinite strip with internal crack subjected to various loading. (a) Uniform tension, (b) pure bending.

Table 6
SIFs comparison for an internal crack of length 2L in an orthotropic strip under tension
b/h Tension (a/h =0.1) Pure bending (a/h = 0.1) Tension (a/h =0.2) Pure bending (a/h =0.2)

Ki(a)/oVal Ki(b)/ovVaL Ki(a)/oval Ki(b)/ovaL Ki(a)/ov/al Ki(b)/oVaL Ki(a)/oval Ki(b)/ovaL
From F2LFEM

0.2 1.0455 1.0367 0.7823 0.6754

0.3 1.1213 1.0807 0.7739 0.5495 1.0224 1.0199 0.5616 0.4596
0.4 1.2155 1.1227 0.7630 0.4136 1.0537 1.0400 0.5216 0.3166
0.5 1.3138 1.1555 0.7387 0.2661 1.0947 1.0623 0.4802 0.1694
0.6 1.4057 1.1817 0.6979 0.1090 1.1379 1.0874 0.4326 0.0178
0.7 1.4854 1.2174 0.6419 —-0.0564 1.1814 1.1293 0.3780 —0.1400
0.8 1.5538 1.3079 0.5738 —-0.2386 1.2301 1.2301 0.3160 —-0.3160
0.9 1.6267 1.6267 0.4941 —0.4941 1.3079 1.5538 0.2386 —0.5738
From Kaya and Erdogan (1980)

0.2 1.0385 1.0296 0.7771 0.6708

0.3 1.1172 1.0758 0.7717 0.5462 1.0154 1.0129 0.5577 0.4565
0.4 1.2122 1.1183 0.7614 0.4114 1.0494 1.0355 0.5202 0.3145
0.5 1.3106 1.1512 0.7373 0.2647 1.0909 1.0584 0.4791 0.1682
0.6 1.4027 1.1775 0.6967 0.1083 1.1342 1.0836 0.4316 0.0173
0.7 1.4826 1.2133 0.6406 —-0.0565 1.1778 1.1255 0.3771 —-0.1399
0.8 1.5510 1.304 0.5727 —-0.238 1.2264 1.2264 0.3152 —-0.3152
0.9 1.6241 1.6241 0.4929 —-0.4929 1.3040 1.5510 0.2380 —-0.5727
Corresponding errors (%)

0.2 0.68 0.69 0.67 0.69

0.3 0.37 0.46 0.28 0.60 0.69 0.69 0.70 0.68
0.4 0.28 0.39 0.21 0.53 0.41 0.43 0.27 0.66
0.5 0.24 0.37 0.19 0.54 0.35 0.37 0.23 0.70
0.6 0.21 0.36 0.18 0.69 0.33 0.35 0.23 2.85
0.7 0.19 0.34 0.20 -0.15 0.31 0.34 0.24 0.08
0.8 0.18 0.30 0.20 0.27 0.30 0.30 0.24 0.24
0.9 0.16 0.16 0.24 0.24 0.30 0.18 0.27 0.20

L=(b—a)/2 a/h=0.1and0.2.

be noted that the negative SIFs given in Tables 6 and 7 are meaningful only if the results are used in
superposition with other results in such a way that the combined SIFs are positive.

4. Numerical examples for Case II crack problems

Although Case II crack problems have not been studied before, the analytical solution of Eq. (13) can be
verified by comparing Case II (Eq. (13)) with Case I (Eq. (12)) problems. For Case I crack problems when
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Table 7
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SIFs comparison for an internal crack of length 2L in an orthotropic strip under tension

b/h

Tension (a/h = 0.3)

Pure bending (a/h = 0.3)

Tension (a/h = 0.4)

Pure bending (a/h = 0.4)

Ki(a)/ov/nL Ki(b)/ov/rL Ki(a)/oVaL Ki(b)/ov/rL

Ki(a)/ovaL Ki(b)/ov/aL

Ki(a)/ovaL  Ki(b)/ov/aL

From F2LFEM

0.4 1.0148 1.0138
0.5 1.0303 1.0251
0.6 1.0540 1.0451
0.7 1.0848 1.0848
0.8 1.1293 1.1814
0.9 1.2174 1.4854
From Kaya and Erdogan (1980)

0.4 1.0079 1.0068
0.5 1.0261 1.0208
0.6 1.0504 1.0415
0.7 1.0811 1.0811
0.8 1.1255 1.1778
0.9 1.2133 1.4826
Corresponding errors (%)

0.4 0.69 0.69
0.5 0.41 0.42
0.6 0.35 0.35
0.7 0.34 0.34
0.8 0.34 0.31
0.9 0.34 0.19

0.3548
0.3059
0.2561
0.2020
0.1400
0.0564

0.3524
0.3054
0.2558
0.2017
0.1399
0.0565

0.69
0.16
0.13
0.14
0.08
-0.15

0.2538
0.1054
—0.0455
-0.2020
—-0.3780
—-0.6419

0.2521
0.1042
—-0.0459
-0.2017
-0.3771
—-0.6406

0.68
1.20
-0.84
0.14
0.24
0.20

1.0118
1.0224
1.0451
1.0874
1.1817

1.0049
1.0182
1.0415
1.0836
1.1775

0.69
0.41
0.35
0.35
0.36

1.0116
1.0224
1.0540
1.1379
1.4057

1.0046
1.0182
1.0504
1.1342
1.4027

0.69
0.41
0.35
0.33
0.21

0.1515
0.0997
0.0455
-0.0178
—0.1090

0.1505
0.1001
0.0459
-0.0173
—-0.1083

0.68
-0.41
-0.84

2.85

0.69

0.0508
—-0.0997
-0.2561
—-0.4326
—-0.6979

0.0505
—-0.1001
—-0.2558
-0.4316
—-0.6966

0.64
—-0.41
0.13
0.23
0.19

L=(h—a)/2 a/h=03and 0.4.

the complex parameters are p;, =iff and p, =19, by setting 6 close to f, the result of SIF could be
approaching that of Case II crack problems. This provides a way to verify the present analytical solu-

tions.

The example considered is a square plate (2/w = 1.0) with single central crack of a/w = 0.5 as shown in
Fig. 4. The verification study is tabulated in Table 8, £, and E, are set to be 30 and 300 units, vy, is set to be
0.3, the shear modulus of G, is varied to approach the Case II crack problems in which the equation of
(E1/2Gy, — v12)2 — E\/E, =0 can be satisfied. The corresponding SIFs for each types of material are
shown in the last column. It can be seen that very good agreement has been obtained when Case I solu-
tions approaching that of Case II which is directly calculated by the new approach derived in the last

section.
Table 8
SIFs comparison for Case I approaching and Case II calculation
E, E, Via Gy p o K
Case I 30 300 0.3 20 0.87759 0.36034 7.1997
30 300 0.3 21 0.82579 0.3829 7.2014
30 300 0.3 22 0.77188 0.40969 7.2038
30 300 0.3 23 0.71217 0.44404 7.2068
30 300 0.3 24 0.63246 0.50000 7.2103
30 300 0.3 243 0.58579 0.53983 7.2114
Case 11 30 300 0.3 24.34165 0.56236 0.56232 7.2116




5. Numerical examples for Case III crack problems
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Examples of internal and edge cracks in a long orthotropic strip considered by Delale and Erdogan
(1977) is studied by F2LFEM. As shown in Fig. 9, for each type of problems, only one-quarter of the whole
plate needs to be modeled. The hatched areas in the figure represent the singular regions in which fractal
meshes are generated by F2LFEM. The material considered is a kind of boron—epoxy composite which
possesses the following properties:

Ei = 3.1 x 10° psi (21.37 GPa),
G = 2.6 x 10° psi (17.93 GPa),

E» =9.7 x 10 psi (66.88 GPa),
Vip = 0.2.

The complex parameters for this kind of orthotropic material are:

1, = 0.29098 + 0.69325i,

U, = —0.29098 + 0.69325i.

The results from F2LFEM and Delale and Erdogan (1977) are tabulated together in Tables 9 and 10. The
percentage of error is generally less than 1.0%.

i 1B IE,
e ey e
i i 2a ib
_izn| | 77 v
L_ _| 412
2a
2w 2w 2w
N .
@ (b) (c)

Fig. 9. Infinite strip with central and edge cracks. (a) Infinite strip with an internal crack. (b) Infinite strip with symmetric edge cracks.

(c) Infinite strip with symmetric collinear cracks.

Table 9

SIF K;/o+/ma for (a) single internal and (b) double edge cracks

a/w (a) Single internal crack 2a/w (b) Symmetric edge cracks
Delale and Erdogan F2LFEM Error (%) Delale and Erdogan F2LFEM  Error (%)
(1977) (1977)
0.1 1.0064 1.0062 —-0.02 0.1 1.593 1.599 0.36
0.2 1.0261 1.0258 -0.03 0.2 1.587 1.591 0.26
0.3 1.0611 1.0610 -0.01 0.3 1.590 1.594 0.28
0.4 1.1155 1.1155 0.00 0.4 1.613 1.616 0.19
0.5 1.1966 1.1966 0.00 0.5 1.661 1.665 0.27
0.6 1.3183 1.3184 0.01 0.6 1.750 1.757 0.38
0.7 1.5099 1.5176 0.51 0.7 1.912 1.929 0.89
0.8 1.8471 1.8626 0.84 0.8 2.220 2.250 1.36
0.9 2.6278 2.6298 0.08 0.9 2.982 3.194 7.11
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Table 10
SIFs K (a)/ovnL and K;(b)/ov/ =L for (c) symmetric collinear cracks of length 2L in an orthotropic trip, 2L =b —a
alw b/w Kl(a)/a\/ﬁ Kl(b)/a\/ﬁ
Delale and Erdogan F2LFEM Error (%) Delale and Erdogan F2LFEM Error (%)
(1977) (1977)
0.1 0.5 1.179 1.181 0.14 1.117 1.120 0.28
0.2 0.6 1.111 1.117 0.50 1.096 1.101 0.50
0.4 0.8 1.099 1.105 0.50 1.127 1.132 0.45
0.5 0.9 1.132 1.134 0.21 1.231 1.233 0.14
0.1 0.9 1.689 1.691 0.13 1.705 1.707 0.10
0.5 0.95 1.200 1.201 0.09 1.461 1.460 -0.09

6. Numerical examples for Case IV problems

It is well known that cracks usually occur parallel to the fibre direction in composite laminates. The
numerical examples of this case where cracks are not parallel to the fibre directions are mainly used for
testing the general anisotropic formulation.

6.1. Single edge cracked plate with rotating material axes

As shown in Fig. 10, an example of an edge cracked rectangular plate with one edge fixed under shear is
studied. Two kinds of materials shown in Fig. 10 are considered which represents two kinds of graphite—
epoxy composite. The modes I and II SIFs are calculated in terms of different orientation of material axes 0.
For material 1, the results from F2LFEM solutions are compared with those from Song and Wolf (2002)
and Tan and Gao (1992) in Table 11. The errors are found to be less than 1.0%.

The problems shown in Fig. 10 have also been studied by Chu and Hong (1990) for material 2. Their
results are compared with those determined from F2LFEM in Table 12. Slightly higher discrepancies are
found for mode II SIFs, especially when the value of Kj/tv/7a is close to zero. This phenomenon is ac-
ceptable since larger numerical error appears when the SIF goes to a very small value.

Chu and Hong (1990) have also studied the problems of single edge-cracked plate under tension with
rotating material axes for material 2 and presented their results in graphical form. F2LFEM is used to re-
calculate the SIFs for this problem and the results from F2LFEM are shown in Table 12 and comparison is
shown in Fig. 11.

Material 1: E, =144.8GPa
© E, =11.7GPa
2% \ 0 G,, =9.66GPa

vy, =021
—@ h
Material 2. E, =141.8GPa
— a

E, =9.45GPa
G, =5.19GPa
v, =031

Fig. 10. Single edge cracked plate under shear (a/w = 0.5, h/w = 2.0).
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Table 11

SIFs for single edged-cracked plate under shear (material 1)
0 F2LFEM Song and Wolf (2002) Tan and Gao (1992) Difference with Song and

Wolf (%)
K[/T\/T[_a_ K][/T\/ﬁ K]/‘L’\/Tl_a_ KH/‘L'\/TI_LZ K[/‘C\/Tl_d K][/T\/T?ﬂ_ Mode I Mode II

0° 8.801 1.339 8.821 1.341 8.789 1.458 -0.23 -0.17
30° 9.833 5.012 9.852 5.066 9.924 5.122 -0.19 -1.06
60° 9.622 3.395 9.645 3.407 9.697 3.405 -0.23 —-0.36
90° 8.835 1.030 8.871 1.029 8.89 1.044 —-0.40 0.12
120° 11.231 —-1.280
150° 10.348 —2.472
160° 9.669 —-1.888
170° 9.061 —-0.591
180° 8.801 1.339

Table 12

SIFs for single edged-cracked plate under shear and tension (material 2)
0 Single edge-cracked plate under shear Tension (Fig. 11)

F2LFEM Chu and Hong (1990) Error (%) F2LFEM
KI/T\/EE KH/T\/T—Ea KI/T\/E K]I/‘E\/EE Mode I Mode II K]/O’\/??a KH/U\/EL;

-90° 8.866 1.037 8.835 1.030 -0.35 —-0.65 2.960 0.000
—-80° 9.721 0.341 9.793 0.302 0.75 —-11.51 2.994 —-0.193
=70° 10.871 —-0.547 10.862 —-0.493 -0.09 -9.80 3.100 —-0.405
—60° 11.269 -1.234 11.231 —-1.280 —-0.33 3.72 3.209 —0.626
-50° 11.145 -1.899 11.213 -2.014 0.61 6.04 3.260 —-0.834
—40° 10.871 —2.444 10.905 —2.473 0.32 1.19 3.227 -0.974
-30° 10.237 -2.336 10.348 -2.472 1.08 5.84 3.115 —0.988
-20° 9.621 -1.926 9.669 —-1.888 0.50 -1.98 2.961 —0.842
-10° 8.992 —-0.501 9.061 —-0.591 0.77 17.91 2.825 —-0.512
0° 8.695 1.358 8.801 1.339 1.22 -1.42 2771 0.000
10° 8.857 3.171 8.928 3.294 0.80 3.89 2.825 0.512
20° 9.343 4.646 9.365 4.548 0.24 -2.11 2.961 0.842
30° 9.763 4.966 9.833 5.012 0.72 0.93 3.115 0.988
40° 10.008 4.778 10.082 4.820 0.74 0.89 3.227 0.974
50° 9.862 4.101 9.952 4.150 0.91 1.19 3.260 0.834
60° 9.639 3.410 9.622 3.395 -0.17 -0.45 3.209 0.626
70° 9.218 2.707 9.215 2.647 -0.03 -2.23 3.100 0.405
80° 8.669 1.775 8.722 1.788 0.61 0.74 2.994 0.193
90° 8.866 1.037 8.835 1.030 —-0.35 —-0.65 2.960 0.000

6.1.1. An inclined crack in rectangular plate under tension

An example of a rectangular plate with an inclined crack under tension is studied. As shown in Fig. 12,
the crack is centrally placed at 45°. The crack length to width ratio is selected to be a/w = 0.2 and the
height to width ratio ranges from 1.0 to 3.0. The material considered is a kind of glass—epoxy composite
which possesses the following properties:

E; =7.0 x 10° psi (48.26 GPa), E, =2.5x 10° psi (17.24 GPa),
Gir = 1.0 % 10° psi (6.89 GPa), vp, = 0.29.
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Fig. 11. Variation of K;/o+/na and Ky;/a+/ma with material orientation angle 6 for single edge cracked plate under tension (material 2).

rl/'b

fractal mesh

2w
Fig. 12. Inclined crack geometry and fractal mesh configuration.

The dimensionless SIFs K;/o+/ma and K1 /0+/na are calculated in terms of different orientation of material
axes 6. The results from F2LFEM and from Gandhi (1972) are tabulated together in Tables 13-15 for
h/w = 1.0, 2.0 and 3.0 respectively. The errors are found to be less than 1.0% for both modes I and IT SIFs.
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Table 13
SIFs for inclined crack with rotating material axes 6, 7/w = 1.0
0 K[/(T\/Tl_d KH/O'\/TC_H_
Gandhi (1972) F2LFEM Error (%) Gandhi (1972) F2LFEM Error (%)
0° 0.525 0.5251 0.03 0.516 0.5151 -0.17
45° 0.519 0.5191 0.01 0.514 0.5157 0.34
90° 0.535 0.5395 0.85 0.529 0.5323 0.62
105° 0.543 0.5456 0.47 0.531 0.5357 0.88
120° 0.544 0.5400 -0.73 0.527 0.5286 0.31
135° 0.538 0.5371 -0.17 0.522 0.5236 0.30
180° 0.525 0.5251 0.03 0.516 0.5151 -0.17
Table 14
SIFs for inclined crack with rotating material axes 0, i/w = 2.0
0 Ki/o\/ma Ku/o\/ma
Gandhi (1972) F2LFEM Error (%) Gandhi (1972) F2LFEM Error (%)
0° 0.522 0.5229 0.17 0.507 0.5066 -0.08
45° 0.515 0.5148 -0.03 0.505 0.5068 0.36
90° 0.513 0.5171 0.81 0.509 0.5117 0.53
105° 0.517 0.5187 0.32 0.510 0.5154 1.06
120° 0.524 0.5201 -0.74 0.512 0.5130 0.20
135° 0.532 0.5306 -0.26 0.511 0.5123 0.26
180° 0.522 0.5229 0.17 0.507 0.5066 —-0.08
Table 15
SIFs for inclined crack with rotating material axes 6, 2/w = 3.0
0 K[/G'\/Tl_d KH/(T\/TC_H_
Gandhi (1972) F2LFEM Error (%) Gandhi (1972) F2LFEM Error (%)
0° 0.523 0.5229 -0.02 0.507 0.5064 -0.12
45° 0.515 0.5148 —-0.03 0.505 0.5068 0.36
90° 0.512 0.5157 0.73 0.506 0.5092 0.63
105° 0.516 0.5180 0.40 0.509 0.5139 0.96
120° 0.524 0.5202 -0.73 0.511 0.5128 0.36
135° 0.531 0.5306 -0.07 0.511 0.5123 0.25
180° 0.523 0.5229 -0.02 0.507 0.5064 -0.12

7. Conclusions

The extension of F2LFEM to various kinds of anisotropic crack problems has been presented. In
this paper, the infinite number of nodal displacements in the singular region is transformed to a new
set of generalized coefficients by means of fractal transformation technique. By taking advantage of
the dimensional independence of the stiffness matrices of the two-dimensional (2D) elements with similar
shape, a single transformation of the stiffness for the first two layers of mesh is enough for all.
The number of unknowns is reduced remarkably, and hence the computational effort is substantially
decreased. The SIFs can be directly evaluated from the coefficients of global interpolation function.
Excellent agreement with error generally less than 1.0% for all four cases of anisotropic crack problems
has been obtained.



4634 RK.L. Su, HY. Sun | International Journal of Solids and Structures 40 (2003) 4615-4635

Acknowledgement

The work described in this paper was fully supported by the grant from the Research Grants Council of
the Hong Kong Special Administrative Region, China (project nos. HKU 7014/00E).

References

Bowie, O.L., Freese, C.E., 1972. Central crack in plane orthotropic rectangular sheet. International Journal of Fracture Mechanics
8 (1), 49-57.

Carpinteri, A., Chiaia, B., Cornetti, P., 2001. Static-kinematic duality and the principle of virtual work in the mechanics of fractal
media. Computer Methods in Applied Mechanics and Engineering 191 (1-2), 3-19.

Chu, S.J., Hong, C.S., 1990. Application of the J, integral to mixed mode crack problems for anisotropic composite laminates.
Engineering Fracture Mechanics 35 (6), 1093-1103.

Delale, F., Erdogan, F., 1977. The problem of internal and edge cracks in an orthotropic strip. Journal of Applied Mechanics—
Transactions of the ASME 44 (2), 237-242.

Gandhi, K.R., 1972. Analysis of an inclined crack centrally placed in an orthotropic rectangular plate. Journal of Strain Analysis 7 (3),
157-162.

Hu, C.B.,, Li, Y.T., Gong, J., 1998. The transition method of geometrically similar element for dynamic crack problem. Key
Engineering Materials 145-149 (Part 1), 267-272.

Kaya, A.C., Erdogan, F., 1980. Stress intensity factors and COD in an orthotropic strip. International Journal of Fracture 16 (2), 171-
190.

Lekhnitskii, S.G., 1963. Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day Inc, San Francisco. P. Fern, Trans.

Lekhnitskii, S.G., Tsai, S.W., Cheron, T., 1968. Anisotropic Plates. Gordon and Breach Science Publishers.

Leung, A.Y.T., Su, R.K.L., 1994. Mode I crack problems by fractal two-level finite element methods. Engineering Fracture Mechanics
48 (6), 847-856.

Leung, A.Y.T., Su, R.K.L., 1995a. Body-force linear elastic stress intensity factor calculation using fractal two-level finite element
method. Engineering Fracture Mechanics 51 (6), 879-888.

Leung, A.Y.T., Su, R.K.L., 1995b. Mixed mode two-dimensional crack problems by fractal two-level finite element method.
Engineering Fracture Mechanics 51 (6), 889-895.

Leung, A.Y.T., Su, R.K.L., 1995c. A numerical study of singular stress field of 3-D cracks. Finite Elements in Analysis and Design 18,
389-401.

Leung, A.Y.T., Su, R.K.L., 1996a. Analytical solution for mode I crack orthogonal to free surface. International Journal of Fracture
76, 79-95.

Leung, A.Y.T., Su, R.K.L., 1996b. Fractal two-level finite element method for cracked Kirchhoff's plates using DKT elements.
Engineering Fracture Mechanics 54 (5), 703-711.

Leung, A.Y.T., Su, R.K.L., 1996¢c. Applications of fractal two-level finite element method for 2D cracks. Microcomputers in Civil
Engineering 11 (4), 249-257.

Leung, A.Y.T., Su, R.K.L., 1996d. Fractal two-level finite element analysis of cracked Reissner’s plate. Thin Walled Structures 24 (4),
315-334.

Leung, A.Y.T., Su, R.K.L., 1998a. Fractal two-level finite element method for free vibration of cracked beams. Journal of Shock and
Vibration 5 (1), 61-68.

Leung, A.Y.T., Su, R.K.L., 1998b. Eigenfunction expansion for penny-shaped and circumferential cracks. International Journal of
Fracture 89 (3), 205-222.

Leung, A.Y.T., Su, R.K.L., 1998c. Two-level finite element study of axisymmetric cracks. International Journal of Fracture 89 (2),
193-203.

Panagiotopoulos, P.D., 1992. Fractal geometry in solids and structures. International Journal of Solids and Structures 29 (17), 2159-
2175.

Panagiotopoulos, P.D., Panagouli, O.K., Mistakidis, E.S., 1993. Fractal geometry and fractal material behavior in Solids and
Structures. Archive of Applied Mechanics 63 (1), 1-24.

Song, C.M., Wolf, J.P., 2002. Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials
with the scaled boundary finite-element method. Computers & Structures 80, 183-197.

Su, RK.L., Leung, A.Y.T., 2001a. Mixed mode cracks in Reissner plates. International Journal of Fracture 107 (3), 235-257.

Su, R.K.L., Leung, A.Y.T., 2001b. Three-dimensional mixed mode analysis of a cracked body by fractal finite element method.
International Journal of Fracture 110 (1), 1-20.



R K L. Su, HY. Sun | International Journal of Solids and Structures 40 (2003 ) 4615-4635 4635

Su, R.K.L., Sun, H.Y., 2002. Numerical solution of cracked thin plates subjected to bending, twisting and shear loads. International
Journal of Fracture 117 (4), 323-335.

Su, RK.L., Sun, H.Y., Leung, A.Y.T., 2003. Determination of crack tip asymptotic stress field by fractal finite element method,
Second M.I.T. Conference on Computational Fluid and Solid Mechanics, June 17-20, 2003 at the Massachusetts Institute of
Technology, Cambridge, U.S.A. (Accepted).

Su, R.K.L., Leung, A.Y.T., Wong, S.C., 1998. Vibration of cracked Kirchhoff’s plates. Key Engineering Materials 145-149, 267-272.

Sun, H.Y., 2003. Fractal Finite Element Method for Anisotropic Crack Problems, M.Phil. thesis, The University of Hong Kong,
p. 110.

Tan, C.L., Gao, Y.L., 1992. Boundary element analysis of plane anisotropic bodies with stress concentrations and cracks. Composite &
Structures 20, 17-28.



	Numerical solutions of two-dimensional anisotropic crack problems
	Introduction
	Fractal two-level finite element method
	Introductory formulation of anisotropic elasticity
	Global interpolation function
	Formulation of F2LFEM
	Fractal transformation

	Numerical examples for Case I crack problems
	Rectangular plates with a central crack under tension
	Infinite strip with internal crack under tension, pure bending

	Numerical examples for Case II crack problems
	Numerical examples for Case III crack problems
	Numerical examples for Case IV problems
	Single edge cracked plate with rotating material axes
	An inclined crack in rectangular plate under tension


	Conclusions
	Acknowledgements
	References


