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Abstract

A complete set of series form solutions of stress and displacement functions, including all higher order terms, around

the crack tip for anisotropic crack problems have been newly derived by eigenfunction expansion approach. The an-

alytical solutions of displacement functions were classified into four cases with respect to different types of complex

parameters and different corresponding physical meanings. By employing these displacement functions as global in-

terpolation functions, fractal two-level finite element method (F2LFEM) was applied to evaluate the stress intensity

factors (SIFs) for various kinds of anisotropic crack problems. In the method of F2LFEM, the infinite number of nodal

displacements was transformed to a small set of generalized coordinates by fractal transformation technique. New

element matrices need not be generated and the singular numerical integration was avoided completely. Numerical

examples of the four cases were studied and high accurate results of SIFs were obtained.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The usefulness of the stress intensity factors (SIFs) in the analysis of the problems of residual strength,
fatigue crack growth rate and stress corrosion has resulted in effort being expanded on the determination of

SIFs. The use of the SIF in examining crack stability requires an accurate prediction or estimation of the

stress field in the vicinity of the crack tip for the given structural geometry, loading and boundary con-

ditions. However, analytical solutions only exist for certain relatively simple cases due to the complicated

boundary conditions associated with the governing equations. Over the last decade or so, finite element

method (FEM) has been firmly established as a standard procedure for the solution of practical fracture

problems. A number of techniques have been suggested for the evaluation of SIF from the finite element
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results but adequate representation of the crack tip singularity remains a common problem to most of these

methods.

Fractal finite elements is originated with Panagiotopoulos (1992, 1993). He adopted the iterated function

system to model fractal boundaries and fractal bodies, obtaining asymptotic results for stresses and strains
in elastic bodies by classical finite element method. The normal and tangent loads acting on the fractal

boundaries were thoroughly investigated and defined using the method of fractal interpolation function.

Recently Carpinteri et al. (2001) introduced a new mathematical formulation to handle the mechanical

quantities of displacements and total energy of fractal bodies based on fractional calculus. The principle of

virtual work for fractal media was rigorously demonstrated and the fractal FEM was introduced by the use

of devil�s staircase spline functions.

The use of fractal geometry to generate infinite number of finite elements around the crack tips has been

adopted by Hu et al. (1998), Song and Wolf (2002) and Leung and Su (1994, 1995b, 1998c). The method
proposed by Leung and Su was entitled fractal two-level finite element method (F2LFEM). The advantage

of this method is that instead of solving large number of unknowns for conventional finite element meshes,

after fractal transformation by the global interpolation functions, only a small set of generalized coordi-

nates remains to be determined. The singularity of the crack tip is modeled by the fractal geometry concepts

such that infinitesimal mesh refinement around the crack tip can be achieved. The SIF can be obtained

directly from the generalized coordinates without any post-processing technique.

The method of F2LFEM has been successfully applied to solve many kinds of crack problems such as

mode I, II, III and mixed-mode 2D cracks (Leung and Su, 1994,1995a,b,1996a,c), cracked classical and
Reissner�s Plates (Leung and Su, 1996b,d; Su et al., 1998; Su and Leung, 2001a; Su and Sun, 2002), axi-

symmetric cracks (Leung and Su, 1998c), penny-shaped and circumferential cracks (Leung and Su, 1998b),

vibration of cracked beams (Leung and Su, 1998a), together with three-dimensional (3D) cracks (Leung

and Su, 1995c; Su and Leung, 2001b). Recently, this method has been found to be able to evaluate the

coefficients of the higher order terms of the crack tip asymptotic field (Su et al., 2003). Upon the above

review, this method has been proved to be efficient and accurate to evaluate the SIFs for cracks in elastic

and isotropic materials. Now this method is extended to tackle elastic anisotropic crack problems, using the

newly derived displacement functions around the crack tip (Sun, 2003) as the global interpolation func-
tions.
2. Fractal two-level finite element method

2.1. Introductory formulation of anisotropic elasticity

For a through cracked composite lamina in a state of plane stress, the equations of equilibrium in the

absence of body forces are
orx

ox
þ osxy

oy
¼ 0;

osxy
ox

þ ory

oy
¼ 0: ð1Þ
The strain–stress relation for a homogeneous anisotropic material is
ex
ey
cxy

8<
:

9=
; ¼

a11 a12 a16
a12 a22 a26
a16 a26 a66

2
4

3
5 rx

ry

sxy

8<
:

9=
;: ð2Þ
Due to the symmetry of compliance matrix, there are altogether six independent constants. Substituting the
stress–strain relation (2) into the following compatibility equation
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o2ex
oy2

þ o2ey
ox2

�
o2cxy
oxoy

¼ 0 ð3Þ
results in
o2

oy2
ða11rx þ a12ry þ a16sxyÞ þ

o2

ox2
ða12rx þ a22ry þ a26sxyÞ �

o2

oxoy
ða16rx þ a26ry þ a66sxyÞ ¼ 0: ð4Þ
A stress function, F , is defined as follows such that the equilibrium equations can be satisfied
rx ¼
o2F
oy2

; ry ¼
o2F
ox2

; sxy ¼ � o2F
oxoy

: ð5Þ
Substituting the above stress functions into Eq. (4), the governing equation is obtained
a22
o4F
ox4

� 2a26
o4F
ox3oy

þ ð2a12 þ a66Þ
o4F

ox2oy2
� 2a16

o4F
oxoy3

þ a11
o4F
oy4

¼ 0: ð6Þ
This equation can also be written in terms of differential operators as
D1D2D3D4 ¼ 0; ð7Þ

where
Di ¼
o

oy

�
� li

o

ox

�
; i ¼ 1; 2; 3; 4
and li are the characteristic roots of the characteristic equation
a11l4 � 2a16l3 þ ð2a12 þ a66Þl2 � 2a26l þ a22 ¼ 0: ð8Þ

It has been proved by Lekhnitskii (1963) that the characteristic Eq. (8) could have either complex, or purely

imaginary roots but could not have real roots in the case of any ideal elastic body with real constants

a11; 2a12 þ a66; a22 not equal to zero. The general form of the characteristic roots can be denoted as,
l1 ¼ a þ ib; l2 ¼ c þ id;

l3 ¼ l1 ¼ a � ib; l4 ¼ l2 ¼ c � id:
ð9Þ
The quantities of l1 and l2 are called the complex parameters which characterize the degree of anisotropy

in the case of plane problems. According to their values it can be judged how much a given body differs

from that of the isotropic, for which l1 ¼ l2 always equal to i.

The complex parameters got from characteristic Eq. (8) can be grouped into four cases (Sun, 2003). As

shown in Fig. 1, Cases I–III correspond to orthotropic cases with the elasticity axes parallel to the coor-

dinate axes, and Case IV corresponds to a general orientation of elasticity axes. For Cases I–III when the
terms a16 ¼ a26 ¼ 0 in the compliance matrix, the characteristic Eq. (8) will be the form
l4 þ 2
E1

2G12

�
� v12

�
l2 þ E1

E2

¼ 0: ð10Þ
Introducing the notations of A ¼ ðE1=2G12Þ � v12 and B ¼ E1=E2, different type of roots l1 and l2 can be

got based on different relations between A and B as shown in Table 1. These different roots (complex

parameters) will lead to different final analytical solutions shown in next section. This is also the main

reason why Cases I–III are separated although they have the same physical meanings.

For Case IV when coordinate system and the elasticity axes do not coincide with each other, the

characteristic Eq. (8) will be a fourth order equation. To avoid dealing with this complicated equation, it
has been shown by Lekhnitskii et al. (1968) that a simple transformation formula shown below can be



Table 1

Classification of anisotropic crack problems based on the complex parameters l

Case Orientation of elasticity axes Coefficients of the compli-

ance matrix

The complex parameters

I Orthotropy and coincident with the

coordinate axis, see Fig. 1(a).

a11, a22, a66, a12 6¼ 0,

a16 ¼ a26 ¼ 0
l1 ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B

pp
¼ ib,

l2 ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B

pp
¼ id.

II l1 ¼ i
ffiffiffiffiffiffiffiffiffiffi
B

pp
¼ ib, l2 ¼ l1.

III l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A	 i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B� A2

pp
¼ a þ ib, l2 ¼ �a þ ib.

IV Orthotropy but not coincident with

the coordinate axis, see Fig. 1(b).

a11, a22, a66, a12, a16, a26 6¼ 0 l0
1 ¼

l1 cos h � sin h
cos h þ l1 sin h

¼ a þ ib,

l0
2 ¼

l2 cos h � sin h
cos h þ l2 sin h

¼ c þ id.

Note: A ¼ E1=2G12 � v12 and B ¼ E1=E2.
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Fig. 1. Classification of anisotropic crack problems concerned.
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followed to get the complex parameters in coordinate system x0oy0 from those in xoy (see Fig. 2), and the
complex parameters l1 and l2 in xoy can be obtained from Eq. (9).
l0
1 ¼

l1 cos h � sin h
cos h þ l1 sin h

; l0
2 ¼

l2 cos h � sin h
cos h þ l2 sin h

: ð11Þ
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Fig. 2. The complex parameters in two coordinates.
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2.2. Global interpolation function

By adopting appropriate form of stress function F (Eq. (5)), adding up the boundary conditions, the

analytical solutions of stress and displacement near the crack tip were derived by Sun (2003) using
eigenfunction expansion technique. Those series form of displacement functions shown below can serve as

global interpolation function in F2LFEM:

(1) Case I:
u

v ¼

m1

r1

r2

u

v

m1
¼ 2
X1

j¼1ðoddÞ
f b1j

��
� d

b
rw
1m1 coswh1 þ rw

2m2 coswh2

�
þ b2jðrw

1m1 sinwh1 � rw
2m2 sinwh2Þ

�

þ 2
X1

j¼2ðevenÞ
f b1jð
�

� rw
1m1 coswh1 þ rw

2m2 coswh2Þ þ b2j rw
1

d
b
m1 sinwh1

�
� rw

2m2 sinwh2

��
;

2
X1

j¼1ðoddÞ
f b1j

��
� d

b
rw
1 n1 sinwh1 þ rw

2 n2 sinwh2

�
� b2jðrw

1 n1 coswh1 � rw
2 n2 coswh2Þ

�

þ
X1

j¼2ðevenÞ
f b1jð
�

� rw
1 n1 sinwh1 þ rw

2 n2 sinwh2Þ � b2j rw
1

d
b
n1 coswh1

�
� rw

2 n2 coswh2

��
;

ð12Þ

where b and d are the imaginary parts of the complex parameters (see Case I in Table 1), kj ¼ j=2
(eigenvalue), f ¼ kj þ 1, w ¼ kj (j ¼ 1, 2, 3, 4, etc.).
¼ �a11b
2 þ a12; m2 ¼ �a11d

2 þ a12; n1 ¼ �a12b þ a22
b

; n2 ¼ �a12d þ a22
d

;

¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 / þ b2 sin2 /

q
; h1 ¼ arctan

b sin/
cos/

;

¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 / þ d2 sin2 /

q
; h2 ¼ arctan

d sin/
cos/
and r and / are the polar coordinates shown in Fig. 1(a).

(2) Case II:
¼ �2m1

X1
j¼0

rj=21 b1j

���
� m2

m1

þ j
2
þ ð � 1Þj

�
cos

j
2

h1 �
j
2
cos

j
2

�
� 2

�
h1

�

� b2j

��
� m2

m1

þ j
2
� ð � 1Þj

�
sin

j
2

h1 �
j
2
sin

j
2

�
� 2

�
h1

��
;

¼ 2n1
X1
j¼0

rj=21 b1j
n2
n1

���
� j
2
� ð � 1Þj

�
sin

j
2

h1 þ
j
2
sin

j
2

�
� 2

�
h1

�

þ b2j
n2
n1

��
� j
2
þ ð � 1Þj

�
cos

j
2

h1 þ
j
2
cos

j
2

�
� 2

�
h1

��
;

ð13Þ
where b is the imaginary part of the complex parameter (see Case II in Table 1),
¼ �a11b
2 þ a12; m2 ¼ 3a11b

2 þ a12; n1 ¼ �a12b þ a22
b

; n2 ¼ a12b þ 3a22
b

;



r1

u

kj

p̂p1

~pp1

q̂q1

~qq1

r1

r2
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¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 / þ b2 sin2 /

q
; h1 ¼ arctan

b sin/
cos/
and r and / are the polar coordinates shown in Fig. 1(a).

(3) Cases III and IV:
¼ 2
X1

j¼1ðoddÞ
a1j rw

1 p̂p1

���
þ p̂p2

b
v

�
coswh1 þ p̂p1

b
v

�
� p̂p2

�
sinwh1

�

� rw
2 ~pp2

b
v
coswh2

�
þ ~pp1

b
v
sinwh2

��
þ b1jf rw

1 p̂p2
d
v
coswh1

��
þ p̂p1

d
v
sinwh1

�

þ rw
2 ~pp1

��
� ~pp2

d
v

�
coswh2 � ~pp2

�
þ ~pp1

d
v

�
sinwh2

��
þ 2

X1
j¼2ðevenÞ

a2j rw
1 p̂p1

b
v

���
� p̂p2

�
coswh1

� p̂p1

�
þ p̂p2

b
v

�
sinwh1

�
� rw

2 ~pp1
b
v
coswh2

�
� ~pp2

b
v
sinwh2

��
þ fb2j rw

1 p̂p1
d
v
coswh1

��
� p̂p2

d
v
sinwh1

�

� rw
2 ~pp1

d
v

��
þ ~pp2

�
coswh2 þ ~pp1

�
� ~pp2

d
v

�
sinwh2

��
: ð14Þ
The v component of the displacement can be obtained by replacing p̂pk by q̂qk and ~ppk by ~qqk (k ¼ 1; 2) in the

above Eq. (14).Where a, b, c and d can be found in Table 1 (Cases III and IV),
¼ j=2; f ¼ kj þ 1; w ¼ kj; x ¼ kj � 1; v ¼ a � c ðj ¼ 1; 2; 3; 4; etc:Þ;

¼ a11ða2 � b2Þ þ a12 � a16a; p̂p2 ¼ 2a11ab � a16b;

¼ a11ðc2 � d2Þ þ a12 � a16c; ~pp2 ¼ 2a11cd � a16d;

¼ a12a þ a22
a

a2 þ b2
� a26; q̂q2 ¼ a12b � a22

b

a2 þ b2
;

¼ a12c þ a22
c

c2 þ d2
� a26; ~qq2 ¼ a12d � a22

d

c2 þ d2
;

¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos/ þ a sin/Þ2 þ b2 sin2 /

q
; h1 ¼ arctan

b sin/
cos/ þ a sin/

;

¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos/ þ c sin/Þ2 þ d2 sin2 /

q
; h2 ¼ arctan

d sin/
cos/ þ c sin/
and r and / are the polar coordinates shown in Fig. 1(b).

In the above Eqs. (12)–(14), the coefficients of a1j; a2j; b1j and b2j are generalized coordinates which are to

be determined after loading and boundary conditions are imposed. The relationship between the SIFs and

the coefficients can be got by the following definitions:
KI ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
ry j/¼0; KII ¼ lim

r!0

ffiffiffiffiffiffiffi
2pr

p
sxy j/¼0; ð15Þ
substituting the corresponding stress components into the above equations, the higher order terms vanish

when r ! 0 and only the singular term of 1=
ffiffi
r

p
remains. Therefore the SIFs are related to the first term of

the generalized coordinates (b11 and b21 or a11 and b11) as follows (Sun, 2003),
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(1) Case I:
KI

KI

KI
¼
ffiffiffiffiffiffi
2p

p 3

2
b11

�
� d

b
þ 1

�
; KII ¼ �

ffiffiffiffiffiffi
2p

p 3

2
b21ðb � dÞ: ð16Þ
(2) Case II:
¼ 2
ffiffiffiffiffiffi
2p

p
b11; KII ¼ �2b

ffiffiffiffiffiffi
2p

p
b21: ð17Þ
(3) Cases III and IV:
¼
ffiffiffiffiffiffi
2p

p
a11

�
þ 3

2
b11

�
; KII ¼ �

ffiffiffiffiffiffi
2p

p
a11 a

��
þ b2 � bd

a � c

�
þ 3

2
b11 c

�
þ bd � d2

a � c

��
: ð18Þ
2.3. Formulation of F2LFEM

In the formulation of F2LFEM, the cracked elastic body is divided into the singular region W and the

regular regions X by the boundary C0 as shown in Fig. 3. In the regular region, the conventional finite

elements are adopted and the nodal displacements serve as unknowns. Conventional FEMs suggest the

following local (first level) interpolation for the element displacements u(x),
u ¼ Nd; ð19Þ

where N ¼ Nðn; gÞ is the shape function matrix in terms of the natural coordinates ðn; gÞ, and d is the nodal

displacement vector.

Within the singular region, an infinite set fC1;C2;C3; . . .g of curves similar to the shape of C0 with

proportionality constants �nn1; �nn2; �nn3; . . . ð0 < �nn < 1Þ are generated. Let the displacements of the master nodes

on the boundary C0 be dm and those of the slave nodes within the boundary C0 be ds. The grading of mesh

inside the singular region can be controlled by the proportionality constant �nn < 1. Higher values of �nn will

produce finer grade of mesh and vice versa.

It has been shown (Sun, 2003) that displacements near the crack tip do not vary arbitrarily but follow
certain displacement patterns which automatically satisfy the boundary conditions at the crack surface.

These displacement patterns serve as good global (second level) interpolation functions for F2LFEM to

interpolate the nodal displacements near the crack tip, as follows,
dsðr; hÞ ¼ Tðr; hÞa ð20Þ
Master nodes
Regular region 

Crack

1
2

Boundary 0

Singular region with
infinite similar layers

rSlave nodes

Master nodes
Regular region 

Crack

Γ1Γ2

Boundary Γ

Singular region Ψ with
infinite similar layers

θ

rSlave nodes

Fig. 3. Regular and singular regions and construction of fractal mesh.
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in which T ¼ Tðr; hÞ is a transformation matrix and a is the unknown generalized coordinate vector which

is independent of the polar coordinates.

According to the conservation of strain energy, after transformation, the global finite element stiffness

equation (Leung and Su, 1994) can be written as
Krdr ¼ Qr; ð21Þ

Ks
�dds ¼ Qs; ð22Þ
where
Ks ¼
Kmm KmsT

TTKsm TTKssT

� �
; Qs ¼

Qm

TTQs

� �
and �dds ¼

dm
a

� �
: ð23Þ
2.4. Fractal transformation

To carry out the transformation, the first layer stiffness matrix Kf for the first layer of mesh (Fig. 3) is

first partitioned with respect to s and m:
Kfd ¼ Kf
ss Kf

sm

Kf
ms Kf

mm

� �
ds
dm

� �
: ð24Þ
The displacements at the slaves can be replaced by the global (second level) interpolation function as

follows,
ds
dm

� �
¼ Tf

s 0

0 I

� �
a

dm

� �
; ð25Þ
where the transformation matrix Tf
s can be evaluated by using Eqs. (12)–(14) and a is the generalized

coordinate vector. After transformation, one has,
K
f

s

a

dm

� �
¼ TfT

s K
f
ssT

f
s TfT

s K
f
sm

Kf
msT

f
s Kf

mm

� �
a

dm

� �
: ð26Þ
Furthermore, considering the matrix transformation of the kth inner layer of the element stiffness matrix

and the assembly of inner layer of meshes from the second layer to infinite layer, the generalized stiffness

matrix K
i
is written as
K
i
a ¼

X1
k¼2

TkTKkTk

" #
a; ð27Þ
where Kk is the stiffness of the kth layer which had been proved to be equal to the stiffness matrix of the first

layer (Leung and Su, 1994) and Tk is the transformation matrix of the kth layer of mesh. Since Tk is a power
series of r, it can be related to the transformation matrix of the first layer Tf by
Tk ¼ TfDiag½aj�; ð28Þ

where aj ¼ ajð�nn; kÞ is a scaling function for the transformation matrices. By comparing the transformation

matrices Tk and Tf , it had been shown that ajð1=2; kÞ ¼ 1=2jðk�1Þ when �nn ¼ 1=2. Putting Eq. (28) into

Eq. (27), one has,
K
i
a ¼

X1
k¼2

Diag½ai�TTfTKfTfDiag½aj�
" #

a: ð29Þ
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Eq. (29) is a geometrical series, it can be further simplified as
K
i
a ¼

..

.

� � � aij
�kkfij � � �
..
.

2
664

3
775a; ð30Þ
where
aij ¼
X1
k¼2

aiaj ¼
1

2ðiþjÞ � 1
; ð31Þ
where �kkfij is the ijth entry in matrix TfTKfTf , and aij ¼ aijð�nnÞ is a scaling function for the entry. Eq. (30)

implies that the transformation and assembly of all the inner layer elements can be accomplished effectively

by modifying the generalized stiffness matrix of the first layer using the scaling function aij. The complete

generalized stiffness matrix for the singular region can be calculated by adding up Eqs. (26) and (30) of the
first layer and the inner layers of stiffness matrices, respectively.
3. Numerical examples for Case I crack problems

3.1. Rectangular plates with a central crack under tension

The problems considered are shown in Fig. 4. A rectangular sheet with a central crack of 2a is under

tensile stress of r. Bowie and Freese (1972) have successfully presented extensive data on this kind of

problems for several different geometries and materials. The SIFs presented by Bowie and Freese have not

related to practical material properties, only the value of complex parameters l1 and l2 rather than the

explicit material constants were given. It is therefore considered sufficient to fix b as unity and vary the
parameter of d to find how much the degree of anisotropy can affect the SIFs. According to the relations of

two complex parameters (Case I in Table 1), one has
2

1

σ

E2

E1

a

r

2h

2w

Fig. 4. Single central crack subjected to tension (Hatched area represents the singular region).
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Mater

b ¼

Table

SIFs f

d2
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0.5
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0.9
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3.5

4.5
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bd ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
E1=E2

p
; b þ d ¼

ffiffiffi
2

p
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1=E2Þ

p
þ E1=2G12 � m12g1=2: ð32Þ
Putting b ¼ 1 into the above equations, one has
d2 ¼ E1=E2; 1þ d ¼
ffiffiffi
2

p
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1=E2Þ

p
þ E1=2G12 � m12g1=2: ð33Þ
In the present study, Young�s modulus E1 is fixed as 30 units and m12 as 0.3, E2 and G12 are varied to attain

the variation of d2 as shown in Table 2.

The mesh for F2LFEM analysis is shown in Fig. 4. Due to symmetry of this problem, only one-quarter

of the plate needs to be modeled. Three types of height to width ratio (h=w ¼ 1:0, 1.5, 2.0) are investigated
and each type contains different values of d2 and different crack length to specimen width ratio a=w. The
dimensionless SIFs got from F2LFEM are tabulated in Tables 3–5 for h=w ¼ 1:0, 1.5 and 2.0 respectively.

The results are compared with those from Bowie and Freese (1972) in Figs. 5–7. The errors are found to be

less than 3.0%.

3.2. Infinite strip with internal crack under tension, pure bending

Infinite orthotropic strip with internal crack subjected to uniform tension and pure bending as shown in

Fig. 8 are studied by F2LFEM. The crack varies its position and length by different value of ratios a=h and

b=h. For pure bending load case (Fig. 8(b)), the normalizing maximum stress at the edges of the strip is

r ¼ 6M=h2. The material properties under consideration are:
2

ial constants and complex parameters for cracked rectangular plate (Case I)

d2 E1 ðPsi� 106Þ E2 ðPsi� 106Þ m12 G12 ðPsi� 106Þ
1 0.1 30.0 300.0 0.3 17.647

0.3 30.0 100.0 0.3 15.789

0.5 30.0 60.0 0.3 14.286

0.7 30.0 42.857 0.3 13.043

0.9 30.0 33.333 0.3 12.000

1.0 30.0 30.0 0.3 11.538

1.1 30.0 27.273 0.3 11.111

1.5 30.0 20.0 0.3 9.677

2.5 30.0 12.0 0.3 7.317

3.5 30.0 8.571 0.3 5.882

4.5 30.0 6.667 0.3 4.918

3

or central crack tension from F2LFEM, h=w ¼ 1:0

a=w

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1.035 1.148 1.320 1.540 1.816 2.169 2.606 3.112

1.027 1.096 1.212 1.369 1.566 1.800 2.076 2.417

1.020 1.076 1.169 1.297 1.454 1.642 1.874 2.196

1.016 1.065 1.145 1.254 1.390 1.555 1.769 2.088

1.014 1.057 1.128 1.226 1.348 1.500 1.704 2.023

1.013 1.054 1.122 1.215 1.333 1.480 1.681 1.999

1.012 1.052 1.117 1.206 1.319 1.462 1.661 1.980

1.009 1.044 1.101 1.179 1.281 1.414 1.606 1.925

1.006 1.035 1.081 1.146 1.235 1.357 1.543 1.862

1.004 1.030 1.072 1.131 1.214 1.332 1.514 1.833

1.003 1.028 1.066 1.123 1.203 1.318 1.498 1.815
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Fig. 5. Comparison of SIFs for cracked rectangular plate, h=w ¼ 1:0.

Table 4

SIFs for central crack tension from F2LFEM, h=w ¼ 1:5

d2 a=w

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1 1.031 1.070 1.165 1.291 1.442 1.618 1.820 2.123

0.2 1.022 1.056 1.126 1.219 1.335 1.478 1.670 1.983

0.3 1.015 1.046 1.103 1.181 1.282 1.413 1.604 1.924

0.5 1.009 1.036 1.081 1.147 1.235 1.358 1.548 1.875

0.7 1.006 1.031 1.072 1.132 1.215 1.336 1.525 1.854

0.9 1.004 1.028 1.067 1.124 1.205 1.324 1.513 1.843

1.0 1.003 1.028 1.065 1.121 1.202 1.320 1.509 1.839

1.1 1.003 1.027 1.064 1.119 1.199 1.317 1.505 1.835

Table 5

SIFs for central crack tension from F2LFEM, h=w ¼ 2:0

d2 a=w

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1 1.022 1.036 1.093 1.171 1.268 1.391 1.558 1.864

0.2 1.016 1.033 1.076 1.137 1.221 1.338 1.519 1.843

0.3 1.010 1.029 1.066 1.122 1.202 1.318 1.505 1.834

0.4 1.008 1.026 1.062 1.116 1.195 1.311 1.499 1.831

0.5 1.006 1.025 1.060 1.113 1.191 1.308 1.497 1.829
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Fig. 6. Comparison of SIFs for cracked rectangular plate, h=w ¼ 1:5.
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Fig. 7. Comparison of SIFs for cracked rectangular plate, h=w ¼ 2:0.
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E1 ¼ 170:65 GPa; E2 ¼ 55:16 GPa; v12 ¼ 0:1114; v21 ¼ 0:036:
The dimensionless SIFs got from F2LFEM solutions are compared with those from Kaya and Erdogan

(1980) for each type of load case and for different kinds of crack geometries. For convenience, the result

comparison for a=h ¼ 0:1 and 0.2 is tabulated together in Table 6, and the comparison for a=h ¼ 0:3 and
0.4 is shown in Table 7. From these two tables, the errors are found to be less than 1.0% generally. It should



Table 6

SIFs comparison for an internal crack of length 2L in an orthotropic strip under tension

b=h Tension (a=h ¼ 0:1) Pure bending (a=h ¼ 0:1) Tension (a=h ¼ 0:2) Pure bending (a=h ¼ 0:2)

KIðaÞ=r
ffiffiffiffiffiffi
pL

p
KIðbÞ=r

ffiffiffiffiffiffi
pL

p
KIðaÞ=r

ffiffiffiffiffiffi
pL

p
KIðbÞ=r

ffiffiffiffiffiffi
pL

p
KIðaÞ=r

ffiffiffiffiffiffi
pL

p
KIðbÞ=r

ffiffiffiffiffiffi
pL

p
KIðaÞ=r

ffiffiffiffiffiffi
pL

p
KIðbÞ=r

ffiffiffiffiffiffi
pL

p

From F2LFEM

0.2 1.0455 1.0367 0.7823 0.6754

0.3 1.1213 1.0807 0.7739 0.5495 1.0224 1.0199 0.5616 0.4596

0.4 1.2155 1.1227 0.7630 0.4136 1.0537 1.0400 0.5216 0.3166

0.5 1.3138 1.1555 0.7387 0.2661 1.0947 1.0623 0.4802 0.1694

0.6 1.4057 1.1817 0.6979 0.1090 1.1379 1.0874 0.4326 0.0178

0.7 1.4854 1.2174 0.6419 )0.0564 1.1814 1.1293 0.3780 )0.1400
0.8 1.5538 1.3079 0.5738 )0.2386 1.2301 1.2301 0.3160 )0.3160
0.9 1.6267 1.6267 0.4941 )0.4941 1.3079 1.5538 0.2386 )0.5738

From Kaya and Erdogan (1980)

0.2 1.0385 1.0296 0.7771 0.6708

0.3 1.1172 1.0758 0.7717 0.5462 1.0154 1.0129 0.5577 0.4565

0.4 1.2122 1.1183 0.7614 0.4114 1.0494 1.0355 0.5202 0.3145

0.5 1.3106 1.1512 0.7373 0.2647 1.0909 1.0584 0.4791 0.1682

0.6 1.4027 1.1775 0.6967 0.1083 1.1342 1.0836 0.4316 0.0173

0.7 1.4826 1.2133 0.6406 )0.0565 1.1778 1.1255 0.3771 )0.1399
0.8 1.5510 1.304 0.5727 )0.238 1.2264 1.2264 0.3152 )0.3152
0.9 1.6241 1.6241 0.4929 )0.4929 1.3040 1.5510 0.2380 )0.5727

Corresponding errors (%)

0.2 0.68 0.69 0.67 0.69

0.3 0.37 0.46 0.28 0.60 0.69 0.69 0.70 0.68

0.4 0.28 0.39 0.21 0.53 0.41 0.43 0.27 0.66

0.5 0.24 0.37 0.19 0.54 0.35 0.37 0.23 0.70

0.6 0.21 0.36 0.18 0.69 0.33 0.35 0.23 2.85

0.7 0.19 0.34 0.20 )0.15 0.31 0.34 0.24 0.08

0.8 0.18 0.30 0.20 0.27 0.30 0.30 0.24 0.24

0.9 0.16 0.16 0.24 0.24 0.30 0.18 0.27 0.20

L ¼ ðb� aÞ=2, a=h ¼ 0:1 and 0.2.

h  
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E2
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M M
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Fig. 8. Infinite strip with internal crack subjected to various loading. (a) Uniform tension, (b) pure bending.
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be noted that the negative SIFs given in Tables 6 and 7 are meaningful only if the results are used in

superposition with other results in such a way that the combined SIFs are positive.
4. Numerical examples for Case II crack problems

Although Case II crack problems have not been studied before, the analytical solution of Eq. (13) can be

verified by comparing Case II (Eq. (13)) with Case I (Eq. (12)) problems. For Case I crack problems when



Table 7

SIFs comparison for an internal crack of length 2L in an orthotropic strip under tension

b=h Tension (a=h ¼ 0:3) Pure bending (a=h ¼ 0:3) Tension (a=h ¼ 0:4) Pure bending (a=h ¼ 0:4)

KIðaÞ=r
ffiffiffiffiffiffi
pL

p
KIðbÞ=r

ffiffiffiffiffiffi
pL

p
KIðaÞ=r

ffiffiffiffiffiffi
pL

p
KIðbÞ=r

ffiffiffiffiffiffi
pL

p
KIðaÞ=r

ffiffiffiffiffiffi
pL

p
KIðbÞ=r

ffiffiffiffiffiffi
pL

p
KIðaÞ=r

ffiffiffiffiffiffi
pL

p
KIðbÞ=r

ffiffiffiffiffiffi
pL

p

From F2LFEM

0.4 1.0148 1.0138 0.3548 0.2538

0.5 1.0303 1.0251 0.3059 0.1054 1.0118 1.0116 0.1515 0.0508

0.6 1.0540 1.0451 0.2561 )0.0455 1.0224 1.0224 0.0997 )0.0997
0.7 1.0848 1.0848 0.2020 )0.2020 1.0451 1.0540 0.0455 )0.2561
0.8 1.1293 1.1814 0.1400 )0.3780 1.0874 1.1379 )0.0178 )0.4326
0.9 1.2174 1.4854 0.0564 )0.6419 1.1817 1.4057 )0.1090 )0.6979

From Kaya and Erdogan (1980)

0.4 1.0079 1.0068 0.3524 0.2521

0.5 1.0261 1.0208 0.3054 0.1042 1.0049 1.0046 0.1505 0.0505

0.6 1.0504 1.0415 0.2558 )0.0459 1.0182 1.0182 0.1001 )0.1001
0.7 1.0811 1.0811 0.2017 )0.2017 1.0415 1.0504 0.0459 )0.2558
0.8 1.1255 1.1778 0.1399 )0.3771 1.0836 1.1342 )0.0173 )0.4316
0.9 1.2133 1.4826 0.0565 )0.6406 1.1775 1.4027 )0.1083 )0.6966

Corresponding errors (%)

0.4 0.69 0.69 0.69 0.68

0.5 0.41 0.42 0.16 1.20 0.69 0.69 0.68 0.64

0.6 0.35 0.35 0.13 )0.84 0.41 0.41 )0.41 )0.41
0.7 0.34 0.34 0.14 0.14 0.35 0.35 )0.84 0.13

0.8 0.34 0.31 0.08 0.24 0.35 0.33 2.85 0.23

0.9 0.34 0.19 )0.15 0.20 0.36 0.21 0.69 0.19

L ¼ ðb� aÞ=2, a=h ¼ 0:3 and 0.4.

4628 R.K.L. Su, H.Y. Sun / International Journal of Solids and Structures 40 (2003) 4615–4635
the complex parameters are l1 ¼ ib and l2 ¼ id, by setting d close to b, the result of SIF could be
approaching that of Case II crack problems. This provides a way to verify the present analytical solu-

tions.

The example considered is a square plate (h=w ¼ 1:0) with single central crack of a=w ¼ 0:5 as shown in

Fig. 4. The verification study is tabulated in Table 8, E1 and E2 are set to be 30 and 300 units, m12 is set to be

0.3, the shear modulus of G12 is varied to approach the Case II crack problems in which the equation of

ðE1=2G12 � v12Þ2 � E1=E2 ¼ 0 can be satisfied. The corresponding SIFs for each types of material are

shown in the last column. It can be seen that very good agreement has been obtained when Case I solu-

tions approaching that of Case II which is directly calculated by the new approach derived in the last
section.
Table 8

SIFs comparison for Case I approaching and Case II calculation

E1 E2 m12 G12 b d KI

Case I 30 300 0.3 20 0.87759 0.36034 7.1997

30 300 0.3 21 0.82579 0.3829 7.2014

30 300 0.3 22 0.77188 0.40969 7.2038

30 300 0.3 23 0.71217 0.44404 7.2068

30 300 0.3 24 0.63246 0.50000 7.2103

30 300 0.3 24.3 0.58579 0.53983 7.2114

Case II 30 300 0.3 24.34165 0.56236 0.56232 7.2116
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5. Numerical examples for Case III crack problems

Examples of internal and edge cracks in a long orthotropic strip considered by Delale and Erdogan

(1977) is studied by F2LFEM. As shown in Fig. 9, for each type of problems, only one-quarter of the whole
plate needs to be modeled. The hatched areas in the figure represent the singular regions in which fractal

meshes are generated by F2LFEM. The material considered is a kind of boron–epoxy composite which

possesses the following properties:
Fig. 9.

(c) Infi

Table

SIF KI

a=w

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
E1 ¼ 3:1� 106 psi ð21:37 GPaÞ; E2 ¼ 9:7� 106 psi ð66:88 GPaÞ;
G12 ¼ 2:6� 106 psi ð17:93 GPaÞ; v12 ¼ 0:2:
The complex parameters for this kind of orthotropic material are:
l1 ¼ 0:29098þ 0:69325i; l2 ¼ �0:29098 þ 0:69325i:
The results from F2LFEM and Delale and Erdogan (1977) are tabulated together in Tables 9 and 10. The

percentage of error is generally less than 1.0%.
2w 2w2w

E1

E2

2a

E1

E2

E1

E2

a

ba

(a) (c)(b)

σ σ

2

Infinite strip with central and edge cracks. (a) Infinite strip with an internal crack. (b) Infinite strip with symmetric edge cracks.

nite strip with symmetric collinear cracks.

9

=r
ffiffiffiffiffiffi
pa

p
for (a) single internal and (b) double edge cracks

(a) Single internal crack 2a=w (b) Symmetric edge cracks

Delale and Erdogan

(1977)

F2LFEM Error (%) Delale and Erdogan

(1977)

F2LFEM Error (%)

1.0064 1.0062 )0.02 0.1 1.593 1.599 0.36

1.0261 1.0258 )0.03 0.2 1.587 1.591 0.26

1.0611 1.0610 )0.01 0.3 1.590 1.594 0.28

1.1155 1.1155 0.00 0.4 1.613 1.616 0.19

1.1966 1.1966 0.00 0.5 1.661 1.665 0.27

1.3183 1.3184 0.01 0.6 1.750 1.757 0.38

1.5099 1.5176 0.51 0.7 1.912 1.929 0.89

1.8471 1.8626 0.84 0.8 2.220 2.250 1.36

2.6278 2.6298 0.08 0.9 2.982 3.194 7.11



Table 10

SIFs KIðaÞ=r
ffiffiffiffiffiffi
pL

p
and KIðbÞ=r

ffiffiffiffiffiffi
pL

p
for (c) symmetric collinear cracks of length 2L in an orthotropic trip, 2L ¼ b� a

a=w b=w KIðaÞ=r
ffiffiffiffiffiffi
pL

p
KIðbÞ=r

ffiffiffiffiffiffi
pL

p

Delale and Erdogan

(1977)

F2LFEM Error (%) Delale and Erdogan

(1977)

F2LFEM Error (%)

0.1 0.5 1.179 1.181 0.14 1.117 1.120 0.28

0.2 0.6 1.111 1.117 0.50 1.096 1.101 0.50

0.4 0.8 1.099 1.105 0.50 1.127 1.132 0.45

0.5 0.9 1.132 1.134 0.21 1.231 1.233 0.14

0.1 0.9 1.689 1.691 0.13 1.705 1.707 0.10

0.5 0.95 1.200 1.201 0.09 1.461 1.460 )0.09
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6. Numerical examples for Case IV problems

It is well known that cracks usually occur parallel to the fibre direction in composite laminates. The

numerical examples of this case where cracks are not parallel to the fibre directions are mainly used for

testing the general anisotropic formulation.
6.1. Single edge cracked plate with rotating material axes

As shown in Fig. 10, an example of an edge cracked rectangular plate with one edge fixed under shear is

studied. Two kinds of materials shown in Fig. 10 are considered which represents two kinds of graphite–

epoxy composite. The modes I and II SIFs are calculated in terms of different orientation of material axes h.
For material 1, the results from F2LFEM solutions are compared with those from Song and Wolf (2002)

and Tan and Gao (1992) in Table 11. The errors are found to be less than 1.0%.

The problems shown in Fig. 10 have also been studied by Chu and Hong (1990) for material 2. Their
results are compared with those determined from F2LFEM in Table 12. Slightly higher discrepancies are

found for mode II SIFs, especially when the value of KII=s
ffiffiffiffiffiffi
pa

p
is close to zero. This phenomenon is ac-

ceptable since larger numerical error appears when the SIF goes to a very small value.

Chu and Hong (1990) have also studied the problems of single edge-cracked plate under tension with

rotating material axes for material 2 and presented their results in graphical form. F2LFEM is used to re-

calculate the SIFs for this problem and the results from F2LFEM are shown in Table 12 and comparison is

shown in Fig. 11.
21.0

66.9

7.11

8.144

12

12

2

1

GPaG

GPaE

GPaE

a

w

h

E 1E 2

31.0

19.5

45.9

8.141

12

12

2

1

GPaG

GPaE

GPaE

Material 1:

Material 2:

.

.

=

=

=

=

ν

τ

θ

.

=

=

=

=

ν

:

:

Fig. 10. Single edge cracked plate under shear (a=w ¼ 0:5, h=w ¼ 2:0).



Table 12

SIFs for single edged-cracked plate under shear and tension (material 2)

h Single edge-cracked plate under shear Tension (Fig. 11)

F2LFEM Chu and Hong (1990) Error (%) F2LFEM

KI=s
ffiffiffiffiffiffi
pa

p
KII=s

ffiffiffiffiffiffi
pa

p
KI=s

ffiffiffiffiffiffi
pa

p
KII=s

ffiffiffiffiffiffi
pa

p
Mode I Mode II KI=r

ffiffiffiffiffiffi
pa

p
KII=r

ffiffiffiffiffiffi
pa

p

)90� 8.866 1.037 8.835 1.030 )0.35 )0.65 2.960 0.000

)80� 9.721 0.341 9.793 0.302 0.75 )11.51 2.994 )0.193
)70� 10.871 )0.547 10.862 )0.493 )0.09 )9.80 3.100 )0.405
)60� 11.269 )1.234 11.231 )1.280 )0.33 3.72 3.209 )0.626
)50� 11.145 )1.899 11.213 )2.014 0.61 6.04 3.260 )0.834
)40� 10.871 )2.444 10.905 )2.473 0.32 1.19 3.227 )0.974
)30� 10.237 )2.336 10.348 )2.472 1.08 5.84 3.115 )0.988
)20� 9.621 )1.926 9.669 )1.888 0.50 )1.98 2.961 )0.842
)10� 8.992 )0.501 9.061 )0.591 0.77 17.91 2.825 )0.512
0� 8.695 1.358 8.801 1.339 1.22 )1.42 2.777 0.000

10� 8.857 3.171 8.928 3.294 0.80 3.89 2.825 0.512

20� 9.343 4.646 9.365 4.548 0.24 )2.11 2.961 0.842

30� 9.763 4.966 9.833 5.012 0.72 0.93 3.115 0.988

40� 10.008 4.778 10.082 4.820 0.74 0.89 3.227 0.974

50� 9.862 4.101 9.952 4.150 0.91 1.19 3.260 0.834

60� 9.639 3.410 9.622 3.395 )0.17 )0.45 3.209 0.626

70� 9.218 2.707 9.215 2.647 )0.03 )2.23 3.100 0.405

80� 8.669 1.775 8.722 1.788 0.61 0.74 2.994 0.193

90� 8.866 1.037 8.835 1.030 )0.35 )0.65 2.960 0.000

Table 11

SIFs for single edged-cracked plate under shear (material 1)

h F2LFEM Song and Wolf (2002) Tan and Gao (1992) Difference with Song and

Wolf (%)

KI=s
ffiffiffiffiffiffi
pa

p
KII=s

ffiffiffiffiffiffi
pa

p
KI=s

ffiffiffiffiffiffi
pa

p
KII=s

ffiffiffiffiffiffi
pa

p
KI=s

ffiffiffiffiffiffi
pa

p
KII=s

ffiffiffiffiffiffi
pa

p
Mode I Mode II

0� 8.801 1.339 8.821 1.341 8.789 1.458 )0.23 )0.17
30� 9.833 5.012 9.852 5.066 9.924 5.122 )0.19 )1.06
60� 9.622 3.395 9.645 3.407 9.697 3.405 )0.23 )0.36
90� 8.835 1.030 8.871 1.029 8.89 1.044 )0.40 0.12

120� 11.231 )1.280
150� 10.348 )2.472
160� 9.669 )1.888
170� 9.061 )0.591
180� 8.801 1.339
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6.1.1. An inclined crack in rectangular plate under tension

An example of a rectangular plate with an inclined crack under tension is studied. As shown in Fig. 12,

the crack is centrally placed at 45�. The crack length to width ratio is selected to be a=w ¼ 0:2 and the

height to width ratio ranges from 1.0 to 3.0. The material considered is a kind of glass–epoxy composite

which possesses the following properties:
E1 ¼ 7:0� 106 psi ð48:26 GPaÞ; E2 ¼ 2:5� 106 psi ð17:24 GPaÞ;

G12 ¼ 1:0� 106 psi ð6:89 GPaÞ; v12 ¼ 0:29:



-1.5

-0.5

0.5

1.5

2.5

3.5

-90                   -60                    -30                      0                     30                     60                     90

F2LFEM

Chu & Hong (1990)

a
KI

a
KII

a

w

θ

I

πσ

πσ

a

w

σ

θ

Fig. 11. Variation of KI=r
ffiffiffiffiffiffi
pa

p
and KII=r

ffiffiffiffiffiffi
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p
with material orientation angle h for single edge cracked plate under tension (material 2).
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Fig. 12. Inclined crack geometry and fractal mesh configuration.
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The dimensionless SIFs KI=r
ffiffiffiffiffiffi
pa

p
and KII=r

ffiffiffiffiffiffi
pa

p
are calculated in terms of different orientation of material

axes h. The results from F2LFEM and from Gandhi (1972) are tabulated together in Tables 13–15 for

h=w ¼ 1:0, 2.0 and 3.0 respectively. The errors are found to be less than 1.0% for both modes I and II SIFs.



Table 14

SIFs for inclined crack with rotating material axes h, h=w ¼ 2:0

h KI=r
ffiffiffiffiffiffi
pa

p
KII=r

ffiffiffiffiffiffi
pa

p

Gandhi (1972) F2LFEM Error (%) Gandhi (1972) F2LFEM Error (%)

0� 0.522 0.5229 0.17 0.507 0.5066 )0.08
45� 0.515 0.5148 )0.03 0.505 0.5068 0.36

90� 0.513 0.5171 0.81 0.509 0.5117 0.53

105� 0.517 0.5187 0.32 0.510 0.5154 1.06

120� 0.524 0.5201 )0.74 0.512 0.5130 0.20

135� 0.532 0.5306 )0.26 0.511 0.5123 0.26

180� 0.522 0.5229 0.17 0.507 0.5066 )0.08

Table 13

SIFs for inclined crack with rotating material axes h, h=w ¼ 1:0

h KI=r
ffiffiffiffiffiffi
pa

p
KII=r

ffiffiffiffiffiffi
pa

p

Gandhi (1972) F2LFEM Error (%) Gandhi (1972) F2LFEM Error (%)

0� 0.525 0.5251 0.03 0.516 0.5151 )0.17
45� 0.519 0.5191 0.01 0.514 0.5157 0.34

90� 0.535 0.5395 0.85 0.529 0.5323 0.62

105� 0.543 0.5456 0.47 0.531 0.5357 0.88

120� 0.544 0.5400 )0.73 0.527 0.5286 0.31

135� 0.538 0.5371 )0.17 0.522 0.5236 0.30

180� 0.525 0.5251 0.03 0.516 0.5151 )0.17

Table 15

SIFs for inclined crack with rotating material axes h, h=w ¼ 3:0

h KI=r
ffiffiffiffiffiffi
pa

p
KII=r

ffiffiffiffiffiffi
pa

p

Gandhi (1972) F2LFEM Error (%) Gandhi (1972) F2LFEM Error (%)

0� 0.523 0.5229 )0.02 0.507 0.5064 )0.12
45� 0.515 0.5148 )0.03 0.505 0.5068 0.36

90� 0.512 0.5157 0.73 0.506 0.5092 0.63

105� 0.516 0.5180 0.40 0.509 0.5139 0.96

120� 0.524 0.5202 )0.73 0.511 0.5128 0.36

135� 0.531 0.5306 )0.07 0.511 0.5123 0.25

180� 0.523 0.5229 )0.02 0.507 0.5064 )0.12
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7. Conclusions

The extension of F2LFEM to various kinds of anisotropic crack problems has been presented. In

this paper, the infinite number of nodal displacements in the singular region is transformed to a new

set of generalized coefficients by means of fractal transformation technique. By taking advantage of

the dimensional independence of the stiffness matrices of the two-dimensional (2D) elements with similar

shape, a single transformation of the stiffness for the first two layers of mesh is enough for all.

The number of unknowns is reduced remarkably, and hence the computational effort is substantially
decreased. The SIFs can be directly evaluated from the coefficients of global interpolation function.

Excellent agreement with error generally less than 1.0% for all four cases of anisotropic crack problems

has been obtained.
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